## AIEEE-CBSE-ENG-03

- 1. A function f from the set of natural numbers to integers defined by
- when is odd 2 \_<u>n</u> \_2 f (n) = is when n is even (A) one-one but not onto (B) onto but not one-one (C) one-one and onto both (D) neither one-one nor onto Let  $z_1$  and  $z_2$  be two roots of the equation  $z^2 + az + b = 0$ , z being complex. Further, assume 2. that the origin,  $z_1$  and  $z_2$  form an equilateral triangle, then (A)  $a^2 = b$ (B)  $a^2 = 2b$  $(C) a^2 = 3b$  $(D) a^2 = 4b$ If z and  $\omega$  are two non-zero complex numbers such that  $|z\omega| = 1$ , and Arg  $(z) - \text{Arg}(\omega) = \frac{\pi}{2}$ , 3. then  $\overline{z}\omega$  is equal to (A) 1 (B) – 1 (C) i (D) – i If  $\left(\frac{1+i}{1-i}\right)^x = 1$ , then 4. (A) x = 4n, where n is any positive integer (B) x = 2n, where n is any positive integer (C) x = 4n + 1, where n is any positive integer (D) x = 2n + 1, where n is any positive integer  $a a^{2} 1 + a^{3}$ If  $\begin{vmatrix} b & b^2 & 1+b^3 \end{vmatrix} = 0$  and vectors (1, a, a<sup>2</sup>) (1, b, b<sup>2</sup>) and (1, c, c<sup>2</sup>) are non–coplanar, then the 5. c  $c^{2}$   $1+c^{3}$ product abc equals (A) 2 (B) – 1 (D) 0 (C) 1 6. If the system of linear equations x + 2ay + az = 0x + 3by + bz = 0x + 4cy + cz = 0has a non-zero solution, then a, b, c (A) are in A. P. (B) are in G.P. (D) satisfy a + 2b + 3c = 0 (C) are in H.P. If the sum of the roots of the quadratic equation  $ax^2 + bx + c = 0$  is equal to the sum of the 7. squares of their reciprocals, then  $\frac{a}{c}$ ,  $\frac{b}{a}$  and  $\frac{c}{b}$  are in (A) arithmetic progression (B) geometric progression (C) harmonic progression (D) arithmetic-geometric-progression The number of real solutions of the equation  $x^2 - 3 |x| + 2 = 0$  is 8.
  - (A) 2 (B) 4 (C) 1 (D) 3
    - (D)



| 9.   | The value of 'a' for which one root of the quadratic equation<br>$(a^2 - 5a + 3) x^2 + (3a - 1) x + 2 = 0$ is twice as large as the other, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|      | (A) $\frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(B) - \frac{2}{3}$                                                                                             |
|      | (C) $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(D) - \frac{1}{3}$                                                                                             |
| I10. | If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$ , then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |
|      | (A) $\alpha = a^2 + b^2$ , $\beta = ab$<br>(C) $\alpha = a^2 + b^2$ , $\beta = a^2 - b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) $\alpha = a^2 + b^2$ , $\beta = 2ab$<br>(D) $\alpha = 2ab$ , $\beta = a^2 + b^2$                            |
| 11.  | A student is to answer 10 out of 13 question<br>least 4 from the first five questions. The nu<br>(A) 140<br>(C) 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ons in an examination such that he must choose at<br>imber of choices available to him is<br>(B) 196<br>(D) 346 |
| 12.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d 5 women can dine at a round table if no two                                                                   |
|      | women are to sit together is given by (A) $6! \times 5!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B) 30                                                                                                          |
|      | (C) 5! × 4!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D) 7! × 5!                                                                                                     |
| 13.  | If 1, $\omega$ , $\omega^2$ are the cube roots of unity, then $\begin{vmatrix} 1 & \omega^n & \omega^{2n} \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |
|      | $\Delta = \begin{vmatrix} 1 & \omega^{n} & \omega^{2n} \\ \omega^{n} & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^{n} \end{vmatrix}$ is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |
|      | (A) 0<br>(C) ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (B) 1<br>(D) ω <sup>2</sup>                                                                                     |
| 14.  | ${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 \times {}^{n}C_{r}$ equals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s of n things taken r at a time, then the expression                                                            |
|      | (A) $^{n+2}C_r$<br>(C) $^{n+1}C_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (B) $^{n+2}C_{r+1}$<br>(D) $^{n+1}C_{r+1}$                                                                      |
| 15.  | The number of integral terms in the expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sion of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is                                                                     |
|      | (A) 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) 33                                                                                                          |
|      | (C) 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D) 35                                                                                                          |
| 16.  | If x is positive, the first negative term in the $(A)$ $Z^{th}$ term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e expansion of $(1 + x)^{27/5}$ is                                                                              |
|      | (A) 7 <sup>th</sup> term<br>(C) 8 <sup>th</sup> term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B) 5 <sup>th</sup> term<br>(D) 6 <sup>th</sup> term                                                            |
| 17.  | The sum of the series $\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \frac{1}{3$ | upto $\infty$ is equal to                                                                                       |
|      | (A) 2 log <sub>e</sub> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B) $\log_2 2 - 1$                                                                                              |
|      | (C) log <sub>e</sub> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D) $\log_{e}\left(\frac{4}{e}\right)$                                                                          |
| 18.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd degree. If f (1) = f ( $-$ 1) and a, b, c are in A. P.,                                                      |
|      | then f' (a), f' (b) and f' (c) are in<br>(A) A.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B) G.P.                                                                                                        |
|      | (C) H. P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D) arithmetic–geometric progression                                                                            |



- 19. If x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub> and y<sub>1</sub>, y<sub>2</sub>, y<sub>3</sub> are both in G.P. with the same common ratio, then the points (x<sub>1</sub>, y<sub>1</sub>) (x<sub>2</sub>, y<sub>2</sub>) and (x<sub>3</sub>, y<sub>3</sub>)
  (A) lie on a straight line
  (B) lie on an ellipse
  (C) lie on a circle
  (D) are vertices of a triangle
- 20. The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side a, is

(A) a cot 
$$\left(\frac{\pi}{n}\right)$$
(B)  $\frac{a}{2}$  cot  $\left(\frac{\pi}{2n}\right)$ (C) a cot  $\left(\frac{\pi}{2n}\right)$ (D)  $\frac{a}{4}$  cot  $\left(\frac{\pi}{2n}\right)$ 

21. If in a triangle ABC  $a \cos^2\left(\frac{C}{2}\right) + c \cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$ , then the sides a, b and c (A) are in A.P. (C) are in H.P. (B) are in G.P. (D) satisfy a + b = c

22. In a triangle ABC, medians AD and BE are drawn. If AD = 4,  $\angle$  DAB =  $\frac{\pi}{6}$  and  $\angle$  ABE =  $\frac{\pi}{3}$ , then the area of the  $\triangle$  ABC is

| (A) $\frac{8}{3}$  | (B) $\frac{16}{3}$        |
|--------------------|---------------------------|
| (C) $\frac{32}{3}$ | (D) <u>64</u><br><u>3</u> |

23. The trigonometric equation 
$$\sin^{-1} x = 2 \sin^{-1} a$$
, has a solution for  
(A)  $\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$  (B) all real values of a  
(C)  $|a| < \frac{1}{2}$  (D)  $|a| \ge \frac{1}{\sqrt{2}}$ 

24. The upper  $\frac{3}{4}$  th portion of a vertical pole subtends an angle  $\tan^{-1} \frac{3}{5}$  at point in the horizontal plane through its foot and at a distance 40 m from the foot. A possible height of the vertical pole is (A) 20 m (B) 40 m (C) 60 m (D) 80 m

25. The real number x when added to its inverse gives the minimum value of the sum at x equal to
(A) 2
(B) 1
(C) -1
(D) -2

26.

If f : R  $\rightarrow$  R satisfies f (x + y) = f (x) + f (y), for all x, y  $\in$  R and f (1) = 7, then  $\sum_{r=1}^{n} f(r)$  is

(A) 
$$\frac{711}{2}$$
 (B)  $\frac{7(11+1)}{2}$ 

(C) 7n (n + 1) (D) 
$$\frac{7n(n + 1)}{2}$$



| 27. | If f (x) = x <sup>n</sup> , then the value of f (1) - $\frac{f'(1)}{1!} + \frac{f'(1)}{1!}$<br>(A) 2 <sup>n</sup><br>(C) 0                                                                                                | $\frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + \dots + \frac{(-1)^n f^n(1)}{n!}$ is<br>(B) $2^{n-1}$<br>(D) 1                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28. | Domain of definition of the function f (x) = $\frac{1}{4}$<br>(A) (1, 2)<br>(C) (1, 2) $\cup$ (2, $\infty$ )                                                                                                              | $\begin{array}{l} \frac{3}{1-x^2} + \log_{10}{(x^3-x)}, \text{ is} \\ (B) (-1, 0) \cup (1, 2) \\ (D) (-1, 0) \cup (1, 2) \cup (2, \infty) \end{array}$ |
| 29. | $\lim_{x \to \pi/2} \frac{\left[1 - \tan\left(\frac{x}{2}\right)\right] \left[1 - \sin x\right]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] \left[\pi - 2x\right]^{3}} $ is                                            |                                                                                                                                                        |
|     | (A) $\frac{1}{8}$                                                                                                                                                                                                         | (B) 0                                                                                                                                                  |
|     | (C) $\frac{1}{32}$                                                                                                                                                                                                        | (D) ∞                                                                                                                                                  |
| 30. | If $\lim_{x \to 0} \frac{\log(3+x) - \log(3-x)}{x} = k$ , the value of                                                                                                                                                    | f k is                                                                                                                                                 |
|     | (A) 0                                                                                                                                                                                                                     | $(B) - \frac{1}{3}$                                                                                                                                    |
|     | (C) $\frac{2}{3}$                                                                                                                                                                                                         | (B) $-\frac{1}{3}$<br>(D) $-\frac{2}{3}$                                                                                                               |
| 31. | Let f (a) = g (a) = k and their n <sup>th</sup> derivatives<br>Further if $\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + g(a)}{g(x) - f(x)}$                                                                          | s f <sup>n</sup> (a), g <sup>n</sup> (a) exist and are not equal for some n.<br>= 4, then the value of k is                                            |
|     | (A) 4<br>(C) 1                                                                                                                                                                                                            | (B) 2<br>(D) 0                                                                                                                                         |
| 32. | The function f (x) = log (x + $\sqrt{x^2 + 1}$ ), is<br>(A) an even function<br>(C) a periodic function                                                                                                                   | (B) an odd function<br>(D) neither an even nor an odd function                                                                                         |
| 33. | If f (x) = $\begin{cases} x e^{-\left(\frac{1}{ x } + \frac{1}{x}\right)}, & x \neq 0 \text{ then f (x) is} \\ 0, & x = 0 \end{cases}$                                                                                    |                                                                                                                                                        |
|     | <ul> <li>(A) continuous as well as differentiable for a</li> <li>(B) continuous for all x but not differentiable</li> <li>(C) neither differentiable nor continuous at x</li> <li>(D) discontinuous everywhere</li> </ul> | e at x = 0                                                                                                                                             |
| 34. | If the function f (x) = $2x^3 - 9ax^2 + 12a^2x + 12a^2x$<br>at p and q respectively such that $p^2 = q$ , the<br>(A) 3                                                                                                    | (B) 1                                                                                                                                                  |
|     | (C) 2                                                                                                                                                                                                                     | (D) $\frac{1}{2}$                                                                                                                                      |



35. If f (y) = e<sup>x</sup>, g (y) = y; y > 0 and F (t) = 
$$\int_{0}^{1} f(t-y) g(y) dy$$
, then  
(A) F (t) = 1 - e<sup>-1</sup> (1 + t)  
(B) F (t) = te<sup>1</sup> - (1 + t)  
(C) F (t) = te<sup>1</sup>  
(



(A) 
$$e - \frac{e^2}{2} - \frac{5}{2}$$
  
(B)  $e + \frac{e^2}{2} - \frac{3}{2}$   
(C)  $e - \frac{e^2}{2} - \frac{3}{2}$   
(D)  $e + \frac{e^2}{2} + \frac{5}{2}$ 

43. The degree and order of the differential equation of the family of all parabolas whose axis is x-axis, are respectively
(A) 2, 1
(B) 1, 2
(C) 3, 2
(D) 2, 3

44. The solution of the differential equation  $(1 + y^2) + (x - e^{\tan^{-1} y}) \frac{dy}{dx} = 0$ , is (A)  $(x - 2) = k e^{-\tan^{-1} y}$  (B)  $2x e^{2\tan^{-1} y} + k$ (C)  $x e^{\tan^{-1} y} = \tan^{-1} y + k$  (D)  $x e^{2\tan^{-1} y} = e^{\tan^{-1} y} + k$ 

45. If the equation of the locus of a point equidistant from the points  $(a_1, b_1)$  and  $(a_2, b_2)$  is  $(a_1 - a_2) x + (b_1 - b_2) y + c = 0$ , then the value of 'c' is

| (A) $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$ | (B) $a_1^2 + a_2^2 + b_1^2 - b_2^2$        |
|--------------------------------------------------|--------------------------------------------|
| (C) $\frac{1}{2}(a_1^2 + a_2^2 - b_1^2 - b_2^2)$ | (D) $\sqrt{a_1^2 + b_1^2 - a_2^2 - b_2^2}$ |

46. Locus of centroid of the triangle whose vertices are (a cos t, a sin t), (b sin t, – b cos t) and (1, 0), where t is a parameter, is (A)  $(3x - 1)^2 + (3y)^2 = a^2 - b^2$  (B)  $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ (C)  $(3x + 1)^2 + (3y)^2 = a^2 + b^2$  (D)  $(3x + 1)^2 + (3y)^2 = a^2 - b^2$ 

47. If the pair of straight lines  $x^2 - 2pxy - y^2 = 0$  and  $x^2 - 2qxy - y^2 = 0$  be such that each pair bisects the angle between the other pair, then (A) p = q (B) p = -q (C) pq = 1 (D) pq = -1

- 48. a square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α (0 < α < π/4) with the positive direction of x-axis. The equation of its diagonal not passing through the origin is</li>
  (A) y (cos α sin α) x (sin α cos α) = a
  (B) y (cos α + sin α) + x (sin α cos α) = a
  - (C) y ( $\cos \alpha + \sin \alpha$ ) + x ( $\sin \alpha + \cos \alpha$ ) = a (D) y ( $\cos \alpha + \sin \alpha$ ) + x ( $\cos \alpha - \sin \alpha$ ) = a
- 49. If the two circles  $(x 1)^2 + (y 3)^2 = r^2$  and  $x^2 + y^2 8x + 2y + 8 = 0$  intersect in two distinct points, then (A) 2 < r < 8 (B) r < 2(C) r = 2 (D) r > 2

50. The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area as 154 sq units. Then the equation of the circle is (A)  $x^2 + y^2 + 2x - 2y = 62$ (B)  $x^2 + y^2 + 2x - 2y = 47$ (C)  $x^2 + y^2 - 2x + 2y = 47$ (D)  $x^2 + y^2 - 2x + 2y = 62$ 

51. The normal at the point  $(bt_1^2, 2bt_1)$  on a parabola meets the parabola again in the point  $(bt_2^2, 2bt_2)$ , then



(A) 
$$t_2 = -t_1 - \frac{2}{t_1}$$
  
(B)  $t_2 = -t_1 + \frac{2}{t_1}$   
(D)  $t_2 = t_1 - \frac{2}{t_1}$   
(D)  $t_2 = t_1 + \frac{2}{t_1}$ 

- 52. The foci of the ellipse  $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$  and the hyperbola  $\frac{x^2}{144} \frac{y^2}{81} = \frac{1}{25}$  coincide. Then the value of b<sup>2</sup> is (A) 1 (B) 5 (C) 7 (D) 9
- 53. A tetrahedron has vertices at O (0, 0, 0), A (1, 2, 1), B (2, 1, 3) and C (- 1, 1, 2). Then the angle between the faces OAB and ABC will be

| $(A)\cos^{-1}\left(\frac{19}{35}\right)$ | (B) $\cos^{-1}\left(\frac{17}{31}\right)$ |
|------------------------------------------|-------------------------------------------|
| (C) 30 <sup>0</sup>                      | (D) 90 <sup>0</sup>                       |

54. The radius of the circle in which the sphere  $x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$  is cut by the plane x + 2y + 2z + 7 = 0 is (A) 1
(B) 2
(C) 3
(D) 4

55. The lines  $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$  and  $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$  are coplanar if (A) k = 0 or - 1 (C) k = 0 or - 3 (B) k = 1 or - 1 (D) k = 3 or - 3

56. The two lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' will be perpendicular, if and only if
(A) aa' + bb' + cc' + 1 = 0
(B) aa' + bb' + cc' = 0
(C) (a + a') (b + b') + (c + c') = 0
(D) aa' + cc' + 1 = 0

57. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere  $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$  is

| (A) 26 | (B) 11 <sup>4</sup> / <sub>13</sub> |
|--------|-------------------------------------|
| (C) 13 | (D) 39                              |

58. Two systems of rectangular axes have the same origin. If a plane cuts them at distances a, b, c and a', b', c' from the origin, then

| (A) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$ | (B) $\frac{1}{a^2} + \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} - \frac{1}{c'^2} = 0$ |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| (C) $\frac{1}{a^2} - \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$ | (D) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$ |

59.  $\vec{a}, \vec{b}, \vec{c}$  are 3 vectors, such that  $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ ,  $|\vec{a}| = 1$ ,  $|\vec{b}| = 2$ ,  $|\vec{c}| = 3$ , then  $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$  is equal to (A) 0 (B) - 7 (C) 7 (D) 1

60. If  $\vec{u}, \vec{v}$  and  $\vec{w}$  are three non-coplanar vectors, then  $(\vec{u} + \vec{v} - \vec{w}) \cdot (\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})$  equals (A) 0 (B)  $\vec{u} \cdot \vec{v} \times \vec{w}$ 



(C)  $\vec{u} \cdot \vec{w} \times \vec{v}$ 

(D)  $3\vec{u}\cdot\vec{v}\times\vec{w}$ 

- 61. Consider points A, B, C and D with position vectors 7î 4ĵ + 7k, î 6ĵ + 10k, -î 3ĵ + 4k and 5î ĵ + 5k respectively. Then ABCD is a
  (A) square
  (B) rhombus
  (C) rectangle
  (D) parallelogram but not a rhombus
- 62. The vectors  $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ , and  $\overrightarrow{AC} = 5\hat{i} 2\hat{j} + 4\hat{k}$  are the sides of a triangle ABC. The length of the median through A is (A)  $\sqrt{18}$  (B)  $\sqrt{72}$

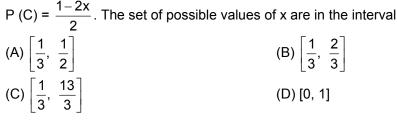
| () () () |                |
|----------|----------------|
| (C) √33  | (D) \sqrt{288} |

63. A particle acted on by constant forces  $4\hat{i} + \hat{j} - 3\hat{k}$  and  $3\hat{i} + \hat{j} - \hat{k}$  is displaced from the point  $\hat{i} + 2\hat{j} + 3\hat{k}$  to the point  $5\hat{i} + 4\hat{j} + \hat{k}$ . The total work done by the forces is (A) 20 units
(B) 30 units
(C) 40 units
(D) 50 units

- 64. Let  $\vec{u} = \hat{i} + \hat{j}$ ,  $\vec{v} = \hat{i} \hat{j}$  and  $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$ . If  $\hat{n}$  is unit vector such that  $\vec{u} \cdot \hat{n} = 0$  and  $\vec{v} \cdot \hat{n} = 0$ , then  $|\vec{w} \cdot \hat{n}|$  is equal to (A) 0 (B) 1
  - (A) 0 (B) 1 (C) 2 (D) 3
- 65. The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set
  (A) is increased by 2
  (B) is decreased by 2
  - (C) is two times the original median

(D) remains the same as that of the original set

66. In an experiment with 15 observations on x, then following results were available:  $\sum x^2 = 2830, \sum x = 170$ One observation that was 20 was found to be wrong and was replaced by the correspondence of the server of the s


One observation that was 20 was found to be wrong and was replaced by the correct value 30. Then the corrected variance is (A) 78.00 (B) 188.66

| (A) 78.00  | (B) 188.6 |
|------------|-----------|
| (C) 177.33 | (D) 8.33  |

67. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is

| (A) $\frac{4}{5}$ | (B) $\frac{3}{5}$       |
|-------------------|-------------------------|
| (C) $\frac{1}{5}$ | (D) <mark>2</mark><br>5 |

68. Events A, B, C are mutually exclusive events such that P (A) =  $\frac{3x+1}{3}$ , P (B) =  $\frac{1-x}{4}$  and





69. The mean and variance of a random variable having a binomial distribution are 4 and 2 respectively, then P (X = 1) is

| (A) $\frac{1}{32}$ | (B) <u>1</u>      |
|--------------------|-------------------|
| (C) $\frac{1}{8}$  | (D) $\frac{1}{4}$ |

70. The resultant of forces  $\vec{P}$  and  $\vec{Q}$  is  $\vec{R}$ . If  $\vec{Q}$  is doubled then  $\vec{R}$  is doubled. If the direction of  $\vec{Q}$  is reversed, then  $\vec{R}$  is again doubled. Then  $P^2 : Q^2 : R^2$  is (A) 3 : 1 : 1
(B) 2 : 3 : 2
(C) 1 : 2 : 3
(D) 2 : 3 : 1

- 71. Let R<sub>1</sub> and R<sub>2</sub> respectively be the maximum ranges up and down an inclined plane and R be the maximum range on the horizontal plane. Then R<sub>1</sub>, R, R<sub>2</sub> are in
  (A) arithmetic–geometric progression
  (B) A.P.
  (C) G.P.
  (D) H.P.
- 72. A couple is of moment  $\vec{G}$  and the force forming the couple is  $\vec{P}$ . If  $\vec{P}$  is turned through a right angle, the moment of the couple thus formed is  $\vec{H}$ . If instead, the forces  $\vec{P}$  are turned through an angle  $\alpha$ , then the moment of couple becomes

| (A) $\tilde{G} \sin \alpha - \tilde{H} \cos \alpha$ | (B) $\tilde{H} \cos \alpha + \tilde{G} \sin \alpha$ |
|-----------------------------------------------------|-----------------------------------------------------|
| (C) $\vec{G} \cos \alpha - \vec{H} \sin \alpha$     | (D) $\vec{H}$ sin $\alpha$ – $\vec{G}$ cos $\alpha$ |

73. Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity  $\vec{u}$  and the other from rest with uniform acceleration  $\vec{f}$ . Let  $\alpha$  be the angle between their directions of motion. The relative velocity of the second particle with respect to the first is least after a time

| (A) $\frac{\text{u}\sin\alpha}{\text{f}}$ | (B) $\frac{f\cos\alpha}{u}$ |
|-------------------------------------------|-----------------------------|
| (C) u sin $\alpha$                        | (D) $\frac{u\cos\alpha}{f}$ |

74. Two stones are projected from the top of a cliff h meters high, with the same speed u so as to hit the ground at the same spot. If one of the stones is projected horizontally and the other is projected at an angle  $\theta$  to the horizontal then tan  $\theta$  equals

| (A) $\sqrt{\frac{2u}{gh}}$ | (B) $2g\sqrt{\frac{u}{h}}$  |
|----------------------------|-----------------------------|
| (C) $2h\sqrt{\frac{u}{g}}$ | (D) u $\sqrt{\frac{2}{gh}}$ |

75. A body travels a distances s in t seconds. It starts from rest and ends at rest. In the first part of the journey, it moves with constant acceleration f and in the second part with constant retardation r. The value of t is given by

(A) 
$$2s\left(\frac{1}{f} + \frac{1}{r}\right)$$
  
(B)  $\frac{2s}{\frac{1}{f} + \frac{1}{r}}$   
(C)  $\sqrt{2s(f+r)}$   
(D)  $\sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)}$ 



## Solutions

- Clearly both one one and onto Because if n is odd, values are set of all non–negative integers and if n is an even, values are set of all negative integers. Hence, (C) is the correct answer.
- 2.  $z_1^2 + z_2^2 z_1 z_2 = 0$   $(z_1 + z_2)^2 - 3z_1 z_2 = 0$   $a^2 = 3b$ . Hence, (C) is the correct answer.
- 5.  $\begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix} + \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = 0$  $(1 + abc) \begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix} = 0$  $\Rightarrow abc = -1.$

Hence, (B) is the correct answer

4. 
$$\frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i$$
$$\left(\frac{1+i}{1-i}\right)^x = i^x$$
$$\Rightarrow x = 4n.$$

Hence, (A) is the correct answer.

6. Coefficient determinant =  $\begin{vmatrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{vmatrix}$  = 0

 $\Rightarrow b = \frac{2ac}{a+c}.$ Hence, (C) is the correct answer

- 8.  $x^2 3 |x| + 2 = 0$ (|x| - 1) (|x| - 2) = 0  $\Rightarrow x = \pm 1, \pm 2$ . Hence, (B) is the correct answer
- 7. Let  $\alpha$ ,  $\beta$  be the roots  $\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$   $\alpha + \beta = \frac{\alpha^2 + \beta^2 - 2\alpha\beta}{(\alpha + \beta)}$   $\left(-\frac{b}{a}\right) = \frac{b^2 - 2ac}{c^2}$  $\Rightarrow 2a^2c = b (a^2 + bc)$



 $\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b} \text{ are in H.P.}$ Hence, (C) is the correct answer

10. 
$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
$$A^{2} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
$$= \begin{bmatrix} a^{2} + b^{2} & 2ab \\ 2ab & a^{2} + b^{2} \end{bmatrix}$$
$$\Rightarrow \alpha = a^{2} + b^{2}, \beta = 2ab.$$
Hence, (B) is the correct answer

$$\beta = 2\alpha$$

$$3\alpha = \frac{3a-1}{a^2 - 5a + 3}$$

$$2\alpha^2 = \frac{2}{a^2 - 5a + 6}$$

$$\frac{(3a-1)^2}{a(a^2 - 5a + 3)^2} = \frac{1}{a^2 + 5a + 6}$$

$$\Rightarrow a = \frac{2}{3}.$$
Hence, (A) is the correct answer

12. Clearly  $5! \times 6!$ (A) is the correct answer

11. Number of choices =  ${}^{5}C_{4} \times {}^{8}C_{6} + {}^{5}C_{5} \times {}^{8}C_{5}$ = 140 + 56. Hence, (B) is the correct answer

13. 
$$\Delta = \begin{vmatrix} 1 + \omega^{n} + \omega^{2n} & \omega^{n} & \omega^{2n} \\ 1 + \omega^{n} + \omega^{2n} & \omega^{2n} & 1 \\ 1 + \omega^{n} + \omega^{2n} & 1 & \omega^{n} \end{vmatrix}$$

= 0

9.

Since,  $1 + \omega^n + \omega^{2n} = 0$ , if n is not a multiple of 3 Therefore, the roots are identical. Hence, (A) is the correct answer

17. 
$$\frac{1}{1\cdot 2} - \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} - \dots$$
  
=  $1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{3} + \frac{1}{3} - \frac{1}{4} - \dots$ 



$$= 1 - 2\left(\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots\right)$$
$$= 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) - 1$$
$$= 2 \log 2 - \log e$$
$$= \log\left(\frac{4}{e}\right).$$

Hence, (D) is the correct answer.

- 15. General term =  ${}^{256}C_r (\sqrt{3})^{256-r} [(5)^{1/8}]^r$ From integral terms, or should be 8k  $\Rightarrow$  k = 0 to 32. Hence, (B) is the correct answer.
- 18.  $f(x) = ax^{2} + bx + c$  f(1) = a + b + c f(-1) = a b + c  $\Rightarrow a + b + c = a b + c \text{ also } 2b = a + c$  f'(x) = 2ax + b = 2ax  $f'(a) = 2a^{2}$  f'(b) = 2ab f'(c) = 2ac  $\Rightarrow AP.$ Hence, (A) is the correct answer.
- 19. Result (A) is correct answer.
- 20. (B)

21. 
$$a\left(\frac{1+\cos C}{2}\right) + c\left(\frac{1+\cos A}{2}\right) = \frac{3b}{2}$$
$$\Rightarrow a + c + b = 3b$$
$$a + c = 2b.$$
Hence, (A) is the correct answer

26. 
$$f(1) = 7$$
  
 $f(1 + 1) = f(1) + f(1)$   
 $f(2) = 2 \times 7$   
only  $f(3) = 3 \times 7$   
 $\sum_{r=1}^{n} f(r) = 7 (1 + 2 + \dots + n)$   
 $= 7 \frac{n(n+1)}{2}$ .

23. 
$$-\frac{\pi}{4} \le \frac{\sin^2 x}{2} \le \frac{\pi}{4}$$
$$-\frac{\pi}{4} \le \sin^{-1}(a) \le \frac{\pi}{4}$$

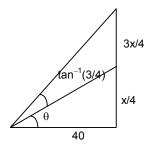


$$\frac{1}{2} \le |\mathbf{a}| \le \frac{1}{\sqrt{2}}.$$
  
Hence, (D) is the correct answer

27. LHS =  $1 - \frac{n}{1!} + \frac{n(n-1)}{2!} - \frac{n(n-1)(n-2)}{3!} + \dots$ =  $1 - {}^{n}C_{1} + {}^{n}C_{2} - \dots$ = 0. Hence, (C) is the correct answer

30. 
$$\lim_{x\to 0} \frac{\frac{1}{3+x} + \frac{1}{3-x}}{1} = \frac{2}{3}.$$

Hence, (C) is the correct answer.


28.  $\begin{array}{ll} 4-x^2\neq 0\\ \Rightarrow x\neq\pm 2\\ x^3-x>0\\ \Rightarrow x\ (x+1)\ (x-1)>0.\\ Hence\ (D) \ is \ the \ correct \ answer. \end{array}$ 

29.

$$\lim_{x \to \pi/2} \frac{\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)(1 - \sin x)}{4\left(\frac{\pi}{4} - \frac{x}{2}\right)(\pi - 2x)^2}$$

32. f(-x) = -f(x)Hence, (B) is the correct answer.

1. 
$$\sin (\theta + \alpha) = \frac{x}{40}$$
  
 $\sin a = \frac{x}{140}$   
 $\Rightarrow x = 40.$   
Hence, (B) is the correct answer



- 34. f(x) = 0 at x = p, q  $6p^2 + 18ap + 12a^2 = 0$   $6q^2 + 18aq + 12a^2 = 0$  f''(x) < 0 at x = pand f''(x) > 0 at x = q.
- 30. Applying L. Hospital's Rule  $\lim_{x \to 2a} \frac{f(a)g'(a) - g(a)f'(a)}{g'(a) - f'(a)} = 4$



 $\frac{k(g'(a) - ff'(a))}{(g'(a) - f'(a))} = 4$ k = 4. Hence, (A) is the correct answer.

36. 
$$\int_{a}^{b} x f(x) dx$$
$$= \int_{a}^{b} (a+b-x) f(a+b-x) dx.$$
Hence, (B) is the correct answer.

33. f'(0) f'(0 - h) = 1 f'(0 + h) = 0LHD  $\neq$  RHD. Hence, (B) is the correct answer.

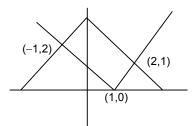
37. 
$$\lim_{x \to 0} \frac{\tan(x^2)}{x \sin x}$$
$$= \lim_{x \to 0} \frac{\tan(x^2)}{x^2 \left(\frac{\sin x}{x}\right)}$$
$$= 1.$$

Hence (C) is the correct answer.

38. 
$$\int_{0}^{1} x (1-x)^{n} dx = \int_{0}^{1} x^{n} (1-x)$$
$$= \int_{0}^{1} (x^{n} - x^{n+1}) = \frac{1}{n+1} - \frac{1}{n+2}.$$

Hence, (C) is the correct answer.

35. 
$$F(t) = \int_{0}^{t} f(t - y) f(y) dy$$
$$= \int_{0}^{t} f(y) f(t - y) dy$$
$$= \int_{0}^{t} e^{y} (t - y) dy$$
$$= x^{t} - (1 + t).$$
Hence, (B) is the correct answer.


 $\begin{array}{ll} \mbox{34.} & \mbox{Clearly f''}(x) > 0 \mbox{ for } x = 2a \Rightarrow q = 2a < 0 \mbox{ for } x = a \Rightarrow p = a \\ & \mbox{ or } p^2 = q \Rightarrow a = 2. \\ & \mbox{ Hence, (C) is the correct answer.} \end{array}$ 

40. 
$$F'(x) = \frac{e^{\sin x}}{3^x}$$



$$= \int \frac{3}{x} e^{\sin x} dx = F(k) - F(1)$$
  
=  $\int_{1}^{64} \frac{e^{\sin x}}{x} dx = F(k) - F(1)$   
=  $\int_{1}^{64} F'(x) dx = F(k) - F(1)$   
F (64) - F(1) = F(k) - F(1)  
 $\Rightarrow k = 64.$   
Hence, (D) is the correct answer.

41. Clearly area =  $2\sqrt{2} \times \sqrt{2}$ = sq units



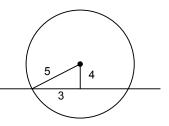
45. Let p (x, y)  

$$(x - a_1)^2 + (y - b_1)^2 = (x - a_2)^2 + (y - b_2)^2$$
  
 $(a_1 - a_2) x + (b_1 - b_2) y + \frac{1}{2} (b_2^2 - b_1^2 + a_2^2 - a_1^2) = 0.$   
Hence, (A) is the correct answer.

46. 
$$x = \frac{a\cos t + b\sin t + 1}{3}, y = \frac{a\sin t - b\cos t + 1}{3}$$
  
 $\left(x - \frac{1}{3}\right)^2 + y^2 = \frac{a^2 + b^2}{9}.$ 

Hence, (B) is the correct answer.

- 43. Equation  $y^2 = 4a \ 9x h$ )  $2yy_1 = 4a \Rightarrow yy_1 = 2a$   $yy_2 = y_1^2 = 0$ . Hence (B) is the correct answer.
- 42.  $\int_{0}^{1} f(x) [x^{2} f(x)] dx$ <br/>solving this by putting f' (x) = f (x).<br/>Hence, (B) is the correct answer.
- 50. Intersection of diameter is the point (1, -1)  $\pi s^2 = 154$   $\Rightarrow s^2 = 49$   $(x - 1)^2 + (y + 1)^2 = 49$ Hence, (C) is the correct answer. 47. (D)
- 49.  $\frac{dx}{dy} (1 + y^2) = (e^{\sin^{-1}y} x)$




$$\frac{dx}{dy} + \frac{x}{1+y^{\alpha}} = \frac{e^{sub^{-1}-y}}{1+y^{2}}$$
52. 
$$\frac{x^{2}}{\left(\frac{12}{5}\right)^{2}} - \frac{y^{2}}{\left(\frac{9}{5}\right)^{2}} = 1$$

$$\Rightarrow e_{1} = \frac{5}{4}$$

$$ae_{2} = \sqrt{1 - \frac{b^{2}}{16}} \times 4 = 3$$

$$\Rightarrow b^{2} = 7.$$
Hence, (C) is the correct answer.



69. np = 4  
npq = 2  
q = 
$$\frac{1}{2}$$
, p =  $\frac{1}{2}$   
n = 8  
p (x = 1) =  ${}^{8}C_{1} \left(\frac{1}{2}\right)^{8}$   
=  $\frac{1}{32}$ .  
Hence, (A) is the correct answer.

- 49.  $(x-1)^2 + (y-3)^2 = r^2$  $(x-4)^2 + (y+2)^2 - 16 - 4 + 8 = 0$  $(x-4)^2 + (y+2)^2 = 12.$
- 67. Select 2 out of 5 =  $\frac{2}{5}$ . Hence, (D) is the correct answer.

$$\begin{array}{ll} 65. \qquad 0 \leq \frac{3x+1}{3} + \frac{1-x}{4} + \frac{1-2x}{2} \leq 1 \\ & 12x+4+3-3x+6-12x \leq 1 \\ & 0 \leq 13-3x \leq 12 \\ & 3x \leq 13 \\ & \Rightarrow x \geq \frac{1}{3} \\ & x \leq \frac{13}{3} \\ & \text{Hence, (C) is the correct answer.} \end{array}$$



3. Arg 
$$\left(\frac{z}{\omega}\right) = \frac{\pi}{2}$$
  
 $|z\omega| = 1$   
 $\overline{z}\omega = -i \text{ or } + i.$ 

